
DopplerPSK Quick-Start Guide for v0.20

Program Description
DopplerPSK is an experimental program for transmitting Doppler-corrected PSK31 on satellite uplinks. It

uses an orbital propagator to estimate the Doppler shift for your location so that it presents a constant

frequency from the point of view of the satellite’s transponder. It’s primarily designed is for satellites

that have a SSB uplink receiver and an FM downlink (which is free of Doppler shift at the baseband

receiver due to the FM subcarrier).

DopplerPSK does not provide any PSK31 demodulation; you should use a separate program for that

purpose. DopplerPSK does not provide any compensation for downlink Doppler (which you would need

for fully linear transponders).

License
DopplerPSK is released on the Apache License 2.0. This is a permissive license to encourage better

implementations. See the NOTICE and LICENSE files in the distribution.

Prerequisites:
 You will need the Java Runtime installed to launch the application. Java can be installed here:

http://www.java.com/en/ Note that you do not need to have Java enabled in your browser.

 Windowing environment. DopplerPSK should run on any desktop OS that supports the java

runtime (Mac OSX, Windows, Linux, etc.)

 16-bit audio output device

 A way to key the transmitter (either VOX or with a manual switch—no PTT keying is provided by

DopplerPSK.

 PSK31 demodulating software

Installing and Running the Program
Download the ZIP archive and decompress to an empty directory. This will create the directory

structure necessary for the program to run. Before updating elements and other auxiliary files, it is best

to try running the program to ensure that the system prerequisites are fulfilled.

The simplest way to run the software is to double-click DopplerPSK.jar. You can also run the software

from the command line with

java –jar DopplerPSK.jar

This option may be helpful for catching any error messages at startup.

http://www.java.com/en/

If all goes well, you should see the program window tracking NO-84 with the default elements that came

with the archive. Now would be a good time to set your station location from the Station menu. You

should also be able to press the TX button to transmit a PSK31 signal from the default sound device.

The PSK31 signal is always generated at a pitch of 2000 Hz +- Doppler correction. In practice, this means

a the PSK31 signal will be between 1300Hz and 2700Hz for a 28 MHz uplink on a LEO satellite like NO-84.

The 2000Hz center value should pass through most transmitter IF filters, but it can be changed in

settings.ini.

If all this works you should update your orbital elements. See the Auxiliary Files section of this guide.

User Interface

Figure 1: DopplerPSK User Interface

FileExit
Exits the program.

StationEdit Station Information

Shows the interface for specifying the station location. This is needed to calculate the Doppler shift for

uplink correction. Latitude and longitude is in degrees.

SatelliteChoose satellite

User interface for choosing a satellite to track. Press OK to select a new satellite or Cancel to exit

without changes. The list of satellites is pulled from the headers of the two-line element sets in the tle

subdirectory. See the Auxiliary Files section of this guide for editing and updating this list.

HelpAbout
Displays information about the program.

Satellite Info
Shows the satellite being tracked, and its current azimuth and elevation for your station location.

Uplink
This shows the transponder uplink frequency and calculated Doppler adjustments for the transmitter.

Placing your cursor over the fields will display a description of the item.

Echo Window
This window echoes text as it is sent out of the transmitter in real time.

Messages Tab
Doppler PSK can provide preset messages that are sent in a loop. The messages are stored in text files in

the /macros subdirectory. The macros are in text files in JSON format, and examples are provided. To

create more macros just create a new file with the same format. The preset messages will be displayed

on the message Tab in alphabetical order by filename.

TX Button

Turns on the transmitter and puts it into message mode. The selected message will be sent in a loop

until the message is changed, the TX button is disengaged, or the transmitter is switched to keyboard-

QSO mode.

My Call

Your callsign should go here. Pressing the update button will replace the MYCALL attribute in the

message with this text.

Dx Call

The callsign of the station with whom you are communicating should be placed here. Pressing the

update button will replace the DXCALL attribute in the message with this text.

Exch

The exchange you wish to send should be entered here. (Typically this will be your grid square for the

exchange, but it could be an ARRL Field Day exchange or anything else). Pressing the update button will

replace the EXCHANGE attribute in the message with this text.

Keyboard Tab

TX Text window

Typing in this window adds characters to the output buffer to be sent. This is for keyboard-to-keyboard

QSOs instead of using the preset messages in a loop.

TX Button

Puts the transmitter in keyboard QSO mode. When the TX is on characters are read from the output

buffer and send to the sound device. If the output buffer is empty, a PSK idle signal is sent. You will

need a way to key the transmitter (either VOX or with a manual switch—no PTT keying is provided).

Clear Buffer Button
This button empties the transmit buffer and clears the TX window. It does not disable the transmitter.

This is useful for cancelling a message.

Auxiliary Files

Updating Orbital Elements
DopplerPSK relies on a two-line element sets (TLEs) for tracking the location of the satellites. “Bare”

two-line elements are the suggested format (such as the nasabare.txt available from AMSAT). Although

DopplerPSK should handle files with headers (such as the nasa.all file available from AMSAT), it is not

extensively tested. You should update elements frequently to maintain accurate Doppler correction.

DopplerPSK will attempt to read all files in the /tle subdirectory as TLE sets. If there are duplicate

satellite names in the files, the last one read with be used (the files are read in lexical order). The names

of the satellites will appear in the “Choose Satellite” menu of the user interface.

doppler.sqf
Frequency information for a particular satellite is stored in the doppler.sqf file, which is located in the

program root directory. This format is identical to that used by SatPC32 for radio-controlled Doppler

correction. This format contains the satellite name, uplink and downlink frequencies, and transponder

information. A sample containing a few satellites has been provided. Note that the satellite name in

doppler.sqf must match the satellite name in the orbital elements exactly. If doppler.sqf does not have

an entry for the selected satellite no Doppler correction will be provided by the software.

UTC-TAI.history
This file contains the time correction between UTC and International Atomic Time (i.e., leap-second

correction). It is required for the Orekit propagation library and must be in the program root directory.

It has been updated for the leap second that occurred on 1 July 2015.

Creating Macros
The /macros subdirectory contains preset messages. You can create a new preset message by creating a

.txt file with the following (JSON) format:

{

 "text": "cq cq cq psat MYCALL MYCALL MYCALL"

}

Lowercase text is more efficient due to the source-coding nature of the PSK31 symbols. That means that

where possible, messages (including callsigns and exchanges that are entered in the UI) will have better

performance if they are entered in lowercase.

There are three substitution strings that can placed in a message. These are meant to allow updating of

messages during runtime using the “Update” button on the message panel:

MYCALL: Your callsign

DXCALL: The other station’s callsign

EXCHANGE: The exchange to be sent

The messages will be shown on the UI in alphabetical order by filename. The default filenames of

“1.txt”, “2.txt”, etc. has been used in the distribution for this reason.

Settings.ini
Stores various program parameters.

Theory of Operation
A conventional analog BPSK transmitter mixes a baseband PSK31 signal with a carrier oscillator using

mixer:

Figure 2: Analog BPSK transmitter (from Peter Martinez,G3PLX (1998). See http://det.bi.ehu.es/~jtpjatae/pdf/p31g3plx.pdf)

To provide Doppler correction, DopplerPSK turns the carrier oscillator into a VFO that tunes

continuously to cancel the expected Doppler shift at any given moment. This must be done in a way

that maintains frequency and phase continuity since any discontinuities will cause an instantaneous

phase shift in the receiver resulting in bit errors. (Since radios often tune in discrete steps, radio control

at the RF frequency often causes bit errors every time the radio updates).

Of particular importance for most PSK31 demodulators is that the frequency drift not be more than

about 1.0 Hz/s, preferably a small fraction of that. Since the Doppler shift on even an 10m uplink of a

LEO satellite is often more than this, some form of Doppler correction is required either on the uplink or

in the AFC algorithm of the demodulator so that the demodulator can function. Correcting the uplink

frequency has the advantage that every uplink signal presents a constant frequency at the satellite,

ensuring that not crash into each other due to differing geometries among the stations using the

transponder.

The algorithm is simply to create a piecewise linear approximation of the Doppler shift over time, and to

do that we borrow a common technique for generating chirps.1 It calculates the Doppler shift at the

current time (f0), and the Doppler shift at some point in the in the future T seconds later (fT).
2 We

subtract these two points to find the change in Doppler shift (or “chirp rate”) k in Hz/s over the interval

T:

𝑘 =
𝑓0 − 𝑓𝑇

𝑇

The order of subtraction in the numerator is so that we cancel the Doppler shift in our oscillator—we

want a signal that goes up by the same amount that Doppler goes down.

Using this value, we wish to compute a continuous sweep that is linear in frequency for some amount of

time. This will form one segment of a piecewise approximation of the frequency over the time period.

Our frequency function is:

𝑓𝑡 = 𝑓0 + 𝑘𝑡

Ultimately we need to get a time domain function for our VFO. To get there, we note that phase 𝜑 of a

time domain signal is the integral of its angular frequency, ω:

𝜔𝑡 = 2𝜋𝑓𝑡

We can now compute the integral substituting in the angular frequency:

𝜑𝑡 = 𝜑0 + ∫ 𝜔𝑡𝑑𝑡
𝑡

0

= 𝜑0 + ∫ 2𝜋𝑓𝑡𝑑𝑡
𝑡

0

 = 𝜑0 + 2 𝜋 (
𝑘

2
𝑡2 + 𝑓0𝑡)

Finally, we get the time domain function xt by taking the sine of the phase function:

𝑥𝑡 = sin 𝜑𝑡

Initially, 𝜑0, should start with a value of π/2 to ensure that the time domain signal starts with a value of

zero instead of an instantaneous voltage jump which would cause a broadband “pop” in the spectrum.

Additionally, f0 should be set to whatever the absolute Doppler shift is at the start. From then on the

value of k should be updated often enough that the Doppler rate is never more than a small fraction of a

1
 See “Chirp”, https://en.wikipedia.org/wiki/Chirp. What follows is mostly a more verbose explanation of the

derivation given there. I chose the linear chip because it is easy to understand and should be sufficient for our
purposes. In theory one could use a higher-order approximation to obtain better tracking, but I suspect this would
be lost in the error of the orbital elements themselves.
2
 Currently hard coded to 1 second in DopplerPSK 2.0.

https://en.wikipedia.org/wiki/Chirp

Hz/s in error. When we update k we assign the current value of 𝜑 to 𝜑0 and recalculate the phase

function for the next segment. This ensures that phase function (and by extension, xt) remains

continuous.

Since we are tracking the slope of the Doppler curve rather than the absolute frequency of the Doppler

curve some error between the transmitted carrier frequency and the calculated absolute Doppler shift

may accumulate over time. This numerical error shouldn’t matter much in practice as it will likely be

dwarfed by other system errors (errors in the orbital elements, LO drift of the transmitter and spacecraft

receiver, etc.). All things equal it would manifest itself in a very slow frequency drift of the carrier in the

passband.

Spacecraft position in DopplerPSK is calculated using the TLE propagation engine in the Orekit library. It

uses the WGS84 one-axis ellipsoid earth model for geodetic coordinates.

